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Asymptotic theory of liquid–solid impact

B y A. A. Korobkin

Lavrentyev Institute of Hydrodynamics
Novosibirsk, 630090, Russia

The liquid–solid impact problem is analysed with the help of the method of matched
asymptotic expansions. This method allows us to estimate the roles of different effects
(viscosity of the liquid, surface tension, compressibility, nonlinearity, geometry) on
the impact, to distinguish the regions of the flow and the stages of the impact,
where and when each of these effects is of major significance, to present a complete
picture of the flow, and describe approximately such phenomena as jetting, escape
of the shock onto the liquid-free surface and cavitation. Five stages of the impact
are distinguished: supersonic stage, transonic stage, subsonic stage, inertia stage and
the stage of developed liquid flow. The asymptotic analysis of each stage is based
on general principles of hydrodynamics and will be helpful to design experiments
on liquid impact and to develop an adequate computational algorithm, as well as to
understand the dynamics of the process.

1. Introduction

The phenomenon of liquid–solid impact is very complicated; it is accompanied by
many effects, descriptions of which cannot be achieved in detail. All available theoret-
ical models of the impact are limited in their validity. The limitations for numerical
models are much stronger than for theoretical ones. Analytical models (theoretical
models which allow their analytical investigation) are restricted by definition. This
means that all we may expect from theoretical or numerical analysis is a ‘sketch’
(caricature) of the phenomenon and estimations of some characteristics. Those are
mainly estimations of orders of quantities and effects in particular situations when
some effects are of major significance but other ones can be disregarded. It is the
standard case for obtaining the estimations when there are only two main effects and
the process evolution is a realization of the balance between them.

Despite the great limitations of analytical models and analytical methods in their
validity, they are powerful tools to study impact phenomena. The reason is that
analytical models are able to predict directly the evolution of the process and its
main peculiarities in detail but only in very specific situations. However, it frequently
occurs that the total process can be described approximately with the help of a
combination of such specific analytical models. This is the basis of the asymptotic
methods which are very helpful in many problems of applied mathematics, mechanics
and physics (see Van Dyke 1964).

Asymptotic theories are developed to analyse processes which deviate only a little
from a main process. The description of the latter must be very simple. In the liquid
impact problem with which we are concerned here, it is the rest state. Asymptotic
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508 A. A. Korobkin

Figure 1. Impact by a flat plate on a circular liquid drop.

theory of impact is based on the general principles of hydrodynamics. Theoretical
models of the liquid–solid impact include:

(1) assumptions about both the liquid and the solid properties and the interaction,
as well as about the medium in which the liquid and solid masses are placed;

(2) equations of the liquid motion;
(3) boundary and initial conditions.

The model must be well posed, i.e. its solution must exist, be unique and weakly
dependent on small variations of parameters, initial and boundary conditions. In
many cases, this solution can be determined only numerically. Complete analysis of
the theoretical model of liquid–solid impact is not available at present. That is why
the connection of the present asymptotic theory with the theoretical model is only
formal.

The asymptotic theory of liquid–solid impact is a collection of models which are
simpler than the original one. The main part of them allow their analytical analysis
and make it possible to present their solutions in analytical form. The models are
connected with each other, but some of them can be analysed independently. This
set of analytical models is referred to as the asymptotic theory because the models,
together with links between them are self-consistent, include the main part of the
approximate models of the impact derived before, give a truth-like description of the
phenomena, correspond to the main part of experimental and numerical results, and
clarify the direction of further investigations. This theory may be helpful to design
experiments on liquid impact, to develop adequate computational algorithms, and
to clarify our understanding of impact phenomena.

Both the shape of the liquid volume and the geometry of the rigid surface are
of great importance and determine peculiarities of the impact process. In order to
demonstrate the abilities of the asymptotic theory, a simple geometry of impact is
considered here as being basic. Initially the liquid occupies a thin circular cylinder
placed adjacent to a plate. The liquid boundary is free and touches the flat rigid
surface at a single point (figure 1). This case corresponds to the experimental con-
figuration discussed by Camus (1971) and Lesser & Field (1983b). The asymptotic
theory is presented for the plane case but where it is possible, generalizations for
three-dimensional case and for more complicated geometries of both the liquid and
solid masses are given.

The general description of the events occurring during the impact is provided
under the following assumptions: the liquid flow is planar; the impacting solid plate
is undeformable; the impact velocity V is constant; the Mach number M = V/c0,
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where c0 is the sound speed in the liquid at rest, is much less than unity; the effects
of viscosity, surface tension and gravity are small compared with inertial effects.

The impact process can be divided into the following five stages: supersonic; tran-
sonic; subsonic; inertia and developed liquid flow. In the first four stages, the defor-
mations of the liquid volume are small and can be approximately neglected outside
small regions close to the periphery of the impact area. The hydrodynamic pressures
at these stages are relatively large and decay with time. At the fifth stage the liquid
flow is already developed and the deformations of the liquid volume have to be taken
into account, however, the pressures are much lower than at the previous stages and
cannot usually be classified as impact pressures. The focus of the present paper is
on the first four stages.

For the ideal liquid model the velocities of the intersection points between the
initial circular free surface and the flat solid surface are greater than the local sound
speed for small times. This means that just after the impact moment the disturbed
part of the liquid is bounded by the solid surface on one side and by a shock front
on the others, the free surface therewith remains undisturbed (see Bowden & Field
1964). This stage is referred to as the supersonic stage. The duration of this stage
is of order O(M2R/V ), where R is the radius of the liquid volume, the dimension
of the contact region is of order O(RM) for small M . The quantity T1 = M2R/V
is taken in the present analysis to be the time scale, RM the length scale and V
the scale of the liquid velocity. At this stage the liquid compressibility is of major
significance. Viscous and capillary effects are localized in space and can be neglected
in the leading order almost everywhere.

The next, transonic, stage starts when the velocities of the contact points approach
the sound speed. At this stage the hydrodynamic pressure reaches its maximum and
the deformation of the liquid surface has to be taken into account close to the contact
points. This is the stage at which spray jets start to form, the speed of the contact
region expansion drops below the sound speed, the shock front escapes onto the free
surface and the jets are already developed at the end of the stage. The duration of
this stage is much shorter than the supersonic stage.

At the subsonic stage the flow region can be divided into two main parts: the liquid
bulk, where the deformations of the liquid boundary are small; and the jet region,
which is attached to the solid surface.

At the inertia stage the shock wave is already far away from the contact region,
and the compressibility effects are localized near the shock front. Behind the shock
wave the flow can be treated as approximately incompressible.

The general description of the impact process given here is reasonable and under-
standable from a physical point of view, but in order to obtain more information
about the flow and the pressure distribution, we need to derive analytical models for
each stage.

2. Formulation of the problem

It is convenient to start from the general Navier–Stokes equations of liquid motion,
which in dimensionless variables have the form

ρ(ut +M(u · ∇)u) = −∇p+ Re−1[∆u+ (ζ/η + 1
3)∇(∇ · u)]− Fr−1 ρe2, (2.1)

ρt +M(∇ · ρu) = 0, (2.2)

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


510 A. A. Korobkin

where u = (u, v) is the velocity vector, p is the pressure, ρ is the liquid density, η is the
coefficient of viscosity, ζ is the second viscosity coefficient, e2 = (0, 1), Re = RV/ν
is the Reynolds number, ν is the kinematic viscosity coefficient, Fr = c20/gR is the
Froude number and g is the acceleration due to gravity. The length, time and velocity
scales were introduced in §1. The initial liquid density ρ0 is chosen as the density
scale, and the ‘water hammer’ pressure ρ0c0V as the pressure scale. The equation of
state is in the Tate form and can be written as

ρ = (1 + nMp)1/n (2.3)

(where n = 7.14 for water). The point of the first contact between the liquid and
the solid surface is taken as the origin of the Cartesian coordinate system Oxy, the
axis Ox being directed along the rigid plate (see figure 1). On the free surface, the
position of which is described by the equation H(x, y, t) = 0, the kinematic condition

Ht +Mu · ∇H = 0, (2.4)

the condition of absence of tangential stresses,

n · R · t = 0, (2.5)

and the condition for the normal component of the stress vector,

n · R · n = We−1K, (2.6)

hold. Here R is the stress tensor, We = ρ0RV
2/σ is the Weber number, σ is the

surface tension coefficient, K is the free surface curvature and n and t are the
unit vectors normal and tangential to the liquid surface, respectively. According to
Stokes’s law

R = −pI +
2
Re

[(
∂u

∂x

)
+
(
∂u

∂x

)∗]
, (2.7)

where I is the unit matrix, (∂u/∂x) is the Jacobian matrix and (∂u/∂x)∗ is its
conjugate. On the wetted part of the impacting rigid surface,

y = −Mt, −a(t) < x < a(t), (2.8)

and the no-slip conditions

v = −1, (2.9)
u = 0, (2.10)

have to be satisfied. The initial conditions for the impact problem are

u = 0, p = 0, ρ = 1, H(x, y, 0) = y + 1
2M(x2 + y2), a(0) = 0. (2.11)

The flow is symmetrical with respect to the axis Oy in our case, therefore
u(x, y, t) = −u(−x, y, t), v(x, y, t) = v(−x, y, t), p(x, y, t) = p(−x, y, t), H(−x, y, t) =
H(x, y, t). In addition, the following conditions must also be satisfied: (A) the liquid
particles cannot penetrate the rigid surface (2.8), i.e. y 6 −Mt in (2.3); (B) the
normal component of the stress vector n · R · n along the wetted region cannot be
greater than a limiting value p∗ which is dependent on the adhesive forces between
the liquid and the solid in the region of their contact.

We will seek the solution of the problem (2.1)–(2.11) as M � 1, Re � 1, We � 1
and Fr � 1. The inequalities will be satisfied if the impact velocity V is such that

max(ν/R,
√
σ/(ρ0R))� V � c0.

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Asymptotic theory of liquid–solid impact 511

This interval of the impact velocities can be achieved if

max(ν/c0, σ/(ρ0c
2
0))� R� c20/g.

For example, this means 10−6 mm� R� 2× 105 m for impact on a water drop.

3. Acoustic solution

In the first four stages of the impact, when the dimensions of the disturbed flow
region are comparable with the dimension of the contact spot, equations (2.3) and
(2.4) and the initial conditions (2.11) provide

ρ = 1 +Mρ̃(x, y, t),
H(x, y, t) = y +M(1

2x
2 − h(x, y, t)), (3.1)

h(x, y, 0) = −1
2y

2, for small Mach numbers. The transformation

y1 = y + 1
2M(x2 + y2), x1 = x

maps the original position of the free surface close to the impact point, x = O(1),
y = O(1), onto the line y1 = 0. The position of the solid surface is now described by
the equation

y1 = M(1
2x

2 − t) + 1
2M

2t2, (3.2)
and the position of the free surface by the equation

y1 = Mh(x, y(x, y1, t), t) + 1
2M

3( 1
2x

2 − h)2. (3.3)

It can be verified that this mapping does not change the equations of motion, or
boundary or initial conditions at leading order when M → 0. As a first step we
assume that the unknown functions u, p, ρ̃, h and all their derivatives appearing
in (2.1)–(2.11) have bounded limits as M → 0, Re → ∞, We → ∞, Fr → ∞ and
t = O(1), x = O(1), y = O(1). In order to derive the boundary-value problem for the
limiting values of the unknown functions, one can formally put M = 0, Re−1 = 0,
Fr−1 = 0, We−1 = 0 in (2.1)–(3.3). At leading order the variables y and y1 are
identical, the flow is irrotational with the velocity potential φ(x, y, t) satisfying the
wave equation

φtt = φxx + φyy (3.4)
in the lower half-plane y < 0, which is the image of a small vicinity of the contact
region in the deformed coordinate system. The boundary conditions (2.4), (2.6) and
(2.9) provide at leading order

ht = φy, φt = 0 (y = 0, |x| > a(t)), (3.5)

φy = −1 (y = 0, |x| < a(t)), (3.6)
and the conditions (2.11) give

φ = 0, h = 0 (y < 0, t = 0). (3.7)

It should be noted that the conditions (2.5) and (2.10) cannot be satisfied by the
acoustic solution. The conditions (A) and (B) and equations (3.2) and (3.3) give

h(x, t) 6 1
2x

2 − t, (3.8)
p > −p∗, (3.9)
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Figure 2. The flow pattern at the supersonic stage.

where p = −φt within the framework of the acoustic approximation (3.4)–(3.7).
Relations (3.4)–(3.9) form the acoustic model which is the basis of the study of

liquid–solid impact at relatively low speeds, V � c0. The acoustic model is analytical,
but its study includes not only construction of the analytical solution, but also the
analysis of this solution, with respect to its correspondence to the original equations
(2.1)–(3.3) and the assumptions with lie at the heart of the acoustic approximation.
It is worth noting that the problem (3.4)–(3.9) is the same as the problem of a blunt-
body impact on the free surface of a weakly compressible liquid (Ogilvie 1963). The
reason is that at the initial stage, which is under consideration here, it does not
matter which surface—rigid or liquid—is curved near the point of the first contact.

If the shapes of the solid surface and the initial liquid surface are not as simple as
those considered here, equation (3.2) for the shape of an equivalent entering body
and the right-hand side of (3.8) have to be changed. The same technique can be
used to derive the acoustic model of liquid–solid impact in the three-dimensional
case. However, the three-dimensional model cannot be classified as being analytical,
because its analysis is currently incomplete.

4. Supersonic stage

In the supersonic stage the free surface remains undisturbed and the dimension
of the contact region can be determined from pure geometrical conditions (Lesser
& Field 1983a). Equation (3.2) gives a(t) =

√
2t in the leading order as M → 0.

This stage is over at the moment ts, when (da/dt) = 1. In dimensionless variables
ts = 0.5. The acoustic solution at the supersonic stage was first derived by Rochester
(1979) for circular liquid drop impact. The generalization of the Rochester solution
for an arbitrary geometry of the impact and the analysis of the acoustic solution
was given by Korobkin (1992b). It was found that in the region of the disturbed flow
(figure 2) this solution provides the approximate solution of the original problem
(2.1)–(3.3) outside narrow zones close to: (i) the shock front; (ii) the rigid surface;
and (iii) the contact points where the viscous effects are of importance. Inside each
of these zones, inner asymptotic solutions have to be constructed and matched with
the outer acoustic solution.

The flow inside the boundary layer on the rigid surface is viscous and linear. The
thickness of the layer is of order O(Re−1/2) as Re → ∞. The shear stresses on the
surface pnτ are given as

pnτ (x, t) =
2√
Re

(
x√

1− x2
√
t− x2/2

−
∫ t

x2/2

px(x, 0, τ) dτ√
t− τ

)
H(
√

2t− |x|).

Here p(x, 0, t) is the acoustic pressure distribution along the rigid surface (see
Rochester 1979) px(x, 0, t) > 0, where 0 6 x 6

√
2t. The stresses are zero at the

centre of the contact region and are unbounded near the contact points. The flow
near the shock front is linear, quasi-stationary and one dimensional to leading order
as Re → ∞. The problem of the viscous flow in this region is a classical one; it is
well known as a problem of shock wave structure. The zones (i) and (ii) meet each
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other at the contact points where both the inner solutions fail. In the vicinity of the
right-hand contact point, x = a(t), y = −Mt, it is convenient to introduce ‘internal’
variables λ, µ such that

x = a(t) + Re−1 λ, y = −Mt+ Re−1 µ.

The flow in the vicinity is governed in the leading order by the equations

ȧ(t)uλ +∇p = ∆u+ (ζ/η + 1
3)∇(∇ · u), ȧ(t)pλ + (∇ · u) = 0 (µ < 0),

which follow from (2.1), (2.2). In the stretched variables we must put Re = 1 in (2.7),
We−1 = 0 in (2.6), and t = (1, 0), n = (0,−1) in (2.5) and (2.6). The conditions
(2.9), (2.10) remain the same but are now taken on the line µ = 0, λ < 0. The
conditions (2.5), (2.6) have to be satisfied on the line µ = 0, λ > 0. The flow is
quasi-stationary and linear. The boundary problem obtained can be reduced to the
matrix factorization problem. The shear stresses in the vicinity are high, of order
O(ρ0c0V ) in dimensional variables. Deformations of the free surface are localized
near the contact points and decay exponentially with the distance. However, the
flow pattern changes radically as ȧ→ 1 + 0.

The changes occur not only in the inner solution near the contact points but also
in the outer (acoustic) solution. The supersonic stage is over and the transonic stage,
where the speed of the contact region expansion is close to the local sound velocity,
starts.

5. Transonic stage

The acoustic solution (see Korobkin 1992b) predicts that at the end of the super-
sonic stage, t→ 0.5− 0, the liquid flow close to the contact points is approximately
self-similar and is described by the formulae

u(x, y, t) = (0.5− t)−1/2U∗

(
x− a(t)

(0.5− t)2 ,
y

(0.5− t)3/2

)
+ · · · ,

v(x, y, t) = V∗

(
x− a(t)

(0.5− t)2 ,
y

(0.5− t)3/2

)
+ · · · ,

p(x, y, t) = u(x, y, t) + · · · ,
where U∗, V∗ are bounded and continuous functions. The formulae indicate that the
‘internal’ variables and new unknown functions near the right-hand contact point
have to be introduced as follows:

t = 0.5 + lτ1, x = a(t) + l2λ1, y1 = l3/2µ1,

u = l−1/2U1(λ1, µ1, τ1), p = l−1/2p1(λ1, µ1, τ1), v = V (λ1, µ1, τ1).

}
(5.1)

The small quantity l determines the duration of the stage. Substituting (5.1) into
(2.1)–(2.4), (2.6), (2.8)–(3.3), where Re−1 = 0, We−1 = 0, Fr−1 = 0 and M � 1
means that the limiting relations as M → 0 will contain the maximum possible num-
ber of terms if and only if l = M2/3. The dimensional pressure p′ therewith is of the
order O(ρ0c

4/3
0 V 2/3), in contrast to the acoustic pressure, which is of order O(ρ0c0V ).

The duration of the transonic stage is of O(M8/3R/V ). The viscous and capillary
effects can be neglected if Re ·M4/3 � 1, We ·M7/3 � 1. For example, for the impact
of a water drop with R = 2 mm and V = 40 m s−1, we obtain Re ·M4/3 ≈ 6.5× 103,
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We ·M7/3 ≈ 103. It is convenient to introduce new stretched variables (n is the con-
stant in equation of state (2.3).

τ1 =
1
2k

(n+ 1)2/3τ, λ1 =
1
4k

(n+ 1)4/3λ, k = −ä(ts),

µ1 =
1
4k

(n+ 1)µ, p1 = (n+ 1)−1/3p, U1 = (n+ 1)−1/3U,

with the help of which the initial boundary-value problem governing the flow near
contact points can be written as

∂U

∂τ
+ [U + τ ]

∂U

∂λ
+
∂V

∂µ
= 0, (5.2)

∂U

∂µ
=
∂V

∂λ
, P = U (µ < 0, λ < g(µ, τ)), (5.3)

V = −1 (µ = 0, λ < λc(τ)), (5.4)

∂h

∂λ
= −V, U = 0 (µ = 0, λc(τ) < λ < λs(τ), τ > τ∗), (5.5)

V +
∂g

∂µ
U = 0,

∂g

∂τ
−
(
∂g

∂µ

)2

= 1
2U + τ (µ < 0, λ < g(µ, τ)), (5.6)

λs(τ) = g(0, τ), (5.7)

λs(τ) = λc(τ) = 0 (τ < τ∗), (5.8)

λc(τ) =
∫ λs(τ)

λc(τ)
V (ξ, 0, τ) dξ (τ > τ∗), (5.9)

U → 0 (τ → −∞). (5.10)
Here the equations λ = g(µ, τ) and µ = h(λ, τ) describe the positions of the shock
front and the free surface, respectively, λc(τ) is the distance between the contact
point and the point of intersection of the solid surface with the undisturbed surface
of the liquid volume (see figure 3). The unknown quantity τ∗ is such that the shock
front is attached to the contact point when τ < τ∗. Conditions (5.5) follow from
the kinematic (2.4) and dynamic (2.6) conditions. Equations (5.8) mean that the
free surface is undisturbed when τ < τ∗; (5.9) is the well-known Wagner condition.
Condition (5.10) provides the matching of the outer acoustic solution with the inner
transonic solution. The condition is very simple and makes it possible to study the
flow at the transonic stage independently from the analysis of the outer solution. It
is worth noting that the problem (5.2)–(5.10) differs from the acoustic model (3.4)–
(3.7) by the additional term U(∂U/∂λ) in (5.2) only. All other equalities are the same
(conditions (5.6) on the shock front follow from the equations of motion (5.2), (5.3)).
Equations (5.2), (5.3) show that there is a velocity potential Φ(λ, µ, τ), U = P = Φλ,
V = Φµ, which satisfies the equation

Φλτ + (τ + Φλ)Φλλ + Φµµ = 0 (µ < 0).

The problem (5.2)–(5.10) does not contain any parameters and is the same for any
geometry of the process and any equation of state. The derived transonic model is
not able to describe the jet formation after the escape of the shock front onto the
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Figure 3. The flow pattern at the transonic stage near the right hand contact point.

free surface. Indeed, due to (5.5) the liquid particles of the free surface can move
only vertically in this approximation.

The values of the unknown functions at the contact point, λ = 0, µ = 0, when
τ < τ∗ will be denoted by a subscript ‘0’. The conditions (5.4), (5.6) and (5.8) predict
U3

0 + 2τU2
0 + 2 = 0. The solution of this cubic equation, which satisfies (5.10), is

U0(τ) = − 8
3τ sin 1

6β(τ) sin( 1
6β(τ) + 1

3π), β(τ) = cos−1

[
1 +

(
3
2τ

)3
]

and exists up to the moment τ∗ = −3 · 2−4/3 (τ∗ ≈ −1.190 55), therewith U0(τ∗) =
41/3. This corresponds to the result given by Lesser (1981) as M → 0.

The peculiarities of the flow are essentially dependent on the sign of the coefficient
U + τ in (5.2). The coefficient is negative when τ < τs, where τs is the solution of the
equation U0(τs) + τs = 0. We find τs = −21/3 (τs ≈ −1.259 921). The solution of the
problem (5.2)–(5.10) can be obtained as a Taylor series when τ < τs. In particular,

Uλ(0, 0, τ) =
12U5

0

(4− U3
0 )(8− 3U3

0 )
, Vµ(0, 0, τ) = − 4U3

0

(4− U3
0 )(8− 3U3

0 )
,

gµµ(0, τ) = − 8U2
0

(4− U3
0 )(8− 3U3

0 )
, Uµ(0, 0, τ) = 0, Vλ(0, 0, τ) = 0,

τ = −U
3
0 + 2
2U2

0
, 0 < U0 < 21/3.

It can be proved that the higher derivatives are the rational functions of U0. An-
alytical expressions for the derivatives can be effectively obtained using computer
algebra. At τs, a local subsonic zone appears near the contact point. The solution in
the time interval τs < τ < τ∗, τ∗− τs < 0.07, can be found only numerically. Analysis
of the corresponding eigenvalue problem predicts that the solution is singular at the
contact point

U = U0(τ) +O(rα(τ)), V = −1 +O(rα(τ)), g(µ, τ) = g0
µ(τ)µ+O(µ1+α(τ)),

α(τ) =
tan−1C2(τ)
tan−1C1(τ)

, C1(τ) = U0(τ)
√
U0(τ) + τ ,

C2(τ) = (4− U3
0 (τ))/(4U0(τ)

√
U0(τ) + τ),

where r =
√
λ2 + µ2, r → 0. It should be noted that α(τ) → 0 as τ → τ∗ − 0. This

means that the asymptotic expansions (5.1) are not uniformly valid at the end of
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Figure 4. (a) Hodograph plane for the quasi-stationary approximation at τ = τs. The image
of the flow region is shaded. (b) Hodograph plane for the quasi-stationary approximation at
the moment when the pressure gradient becomes unbounded at the contact points. The image
of the flow region is shaded. (c) Hodograph plane for the quasi-stationary approximation at
τ = τ∗. The image of the flow region is shaded. (d) Hodograph plane for the quasi-stationary
approximation at τ = τ∗ + 0.1. The image of the flow region is shaded.

the regime with attached shock front and the viscous effects cannot be neglected.
We expect that the model of viscous transonic flow (Sichel 1963) will give a realistic
description of this phase.

In order to clarify the flow at τ > τ∗ the quasi-stationary approximation is used.
Within the framework of this approach we drop all derivatives with respect to time in
(5.2)–(5.10). The resulting problem is analysed by the hodograph method. The rigid
surface, µ = 0, λ < 0, corresponds to the line V = −1, and the free surface to the
line U = 0, and the shock front to the curve (1

2U + τ)U2 + V 2 = 0 in the hodograph
plane (figure 4). The last curve is referred to as the shock polar. The image of the
flow region is shaded. Figure 4d shows that the structure of the flow changes at the
moment τ∗. Here CD is the characteristic curve which corresponds to flow of Prandtl–
Meyer type near the point where the shock front is attached to the free surface. This
qualitative analysis is similar to that given by Guderley (1960) for supersonic flow
around an infinite symmetrical wedge. The present analysis demonstrates that the
deformation of the free surface near the contact points leads to a further increase
in pressure when τ > τ∗. The pressure near the contact points will decrease only
after a decrease in the speed of the contact spot expansion. Another very interesting
feature of the flow after τ = τ∗ follows from figure 4d. It is seen that the pressure
behind the shock front drops by a jump discontinuity after the front escapes onto
the free surface. Correspondingly, the speed of the shock front will be reduced due to
the relief wave coming from the free surface. At the same time, the contact point is
accelerated due to the motion of the free surface towards the solid one. This means
that disturbed part of the free surface grows after τ = τ∗ and then decays again. It
is possible that this part will disappear and the shock front will again be attached to
the contact points. This alalysis agrees with the numerical results of Pidsley (1983)
and by Surov & Ageev (1989). The numerical analysis shows that the shock escape
onto the free surface is an essentially non-stationary process with oscillations of the
main flow characteristics. Nevertheless, the speed of the contact points will vanish
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Figure 5. The flow pattern at the subsonic stage.

with time and at the end of the transonic stage the shock front will be far from the
contact points. The deformations of the free surface will be small almost everywhere
but the curvature of the free surface will be high in a small zone near the moving
central points. It is expected that the nonlinear effects will be localized in this zone
and can be approximately disregarded outside of it. The transonic stage is over and
the subsonic stage starts.

6. Subsonic stage

The parts of the free surface which are involved in motion at this stage move
towards the rigid surface additionally increasing its wetted area, |x| < a(t), y = −Mt.
The dimension of the contact region depends on the liquid flow and is unknown
in advance. This is the main peculiarity of the subsonic stage. From the point of
view of an analytical description of the impact process, the determination of the
function a(t) is a key problem. Only after the problem has been solved may we
think about asymptotic analysis of the flow. It was found (Korobkin 1992a) that an
approximate analytical formula for a(t) could be derived within the framework of
the acoustic approximation (3.4)–(3.7) with the help of condition (3.8). This result
makes it possible to analyse the flow under the liquid–solid impact in all details. The
wave pattern was found to be complicated but it is correctly predicted by the acoustic
approach (Korobkin 1994a). Due to relief wave interaction, the pressure may drop
below its atmospheric value close to the centre of the contact region, and interface
cavitation may be observed (Brunton & Camus 1970; Brunton & Rochester 1979;
Field et al. 1985). The possibility of the appearance of low pressure zones depends
on the speed of the contact region expansion (Korobkin 1994b). The acoustic model
provides the asymptotic solution of the original problem (2.1)–(2.11) inside the flow
region but not near its boundary (figure 5). The boundary of the flow region can
be divided into the following seven parts: (i) viscous boundary layer close to the
central part of the shock front (see §4); (ii) small vicinities of the points where the
relief wave is attached to the shock front (the flow in this zone is two dimensional,
nonlinear and is governed by the transonic approximation); (iii) zones of nonlinear
interaction between the relief wave and the shock front (the flow is unsteady, one-
dimensional to leading order, and nonlinear. Initial conditions can be derived from
the solution at the transonic stage); (iv) small vicinities of the points where the shock
front is attached to the free surface; (v) the viscous boundary layer along the free
surface; (vi) the jet region; (vii) the viscous boundary layer along the wetted solid
surface. The zones (ii), (iii), (iv) can be additionally divided into subzones to clarify
the roles of viscous and acoustic effects. The flows inside these zones were analysed
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by Berezin & Grib (1960) in connection with the problem of nonlinear reflection of
plane shock at a free surface. A similar problem on impulsive wedge motion in a
compressible liquid was studied by Titarenko (1981). Zone (vi) is divided into the
jet root and jet region. The influence of the jet motion on the flow inside the jet
root may be neglected. Respectively, the influence of the liquid motion inside the jet
root on the flow in the main region may also be neglected in the first approximation.
The dimensions of the jet root and the jet thickness are of order O(M3R) as M → 0
in dimensional variables. The flow in the jet root is approximately quasi-stationary,
nonlinear and essentially two-dimensional. The characteristics of the flow and the
pressure distribution are given by the Chaplygin subsonic jet theory (Chaplygin
1904). In particular, the pressure along the solid surface inside the jet root is given
by

p ∼ 2√
π

ȧ2

V 2
0

(
1− ȧ2

c2
0

)−1/4

h1/2(a− x)−1/2,

as M−2 · (a− x)→∞, i.e. far from the jet region. Here h is the jet thickness and ȧ
is the speed of the contact point. The formula agrees with that derived by Wagner
(1932) for the incompressible liquid model when ȧ/c0 → 0. On the other hand, the
acoustic theory predicts

p ∼ γc(t)(a− x)−1/2 (6.1)

close to the jet root; the coefficient γc(t) is thereby known (Korobkin 1994a). Com-
parison of the pressures given by the Chaplygin theory and by the acoustic approxi-
mation (6.1) makes it possible to estimate the jet thickness h and other parameters
of the jet flow. The liquid particles are accelerated inside the jet root up to velocities
comparable with the sound speed. The particles which then come into the jet move
at a velocity equal to twice that of the contact point, 2ȧ(t). These particles are not
affected by any forces since the pressure inside the jet is close to atmospheric. This
means that the particles in the jet move inertially. However, the capillary forces and
the jet interaction with air become important with time and are responsible for the
jet disintegration. That is why at the initial stage of jet formation, when the jet
thickness is small, the jet observed in experiments (see Camus 1971) is very short
and surrounded by a cloud of small drops. But with increasing time the jet thickness
increases and the jet becames visible.

The speed of the contact region expansion drops with time as O(t−1/2) but the
speed of the shock propagation cannot be less than the sound velocity in the quiescent
liquid. Therefore, the distance between the shock and the contact region grows with
time. The acoustic effects decay close to the solid surface, being localized near the
shock front. It is expected that the Wagner theory derived within the framework of
the incompressible liquid model can be used to describe the flow near the contact
region at the end of the subsonic stage, but the rate of convergence of the acoustic
solution to the Wagner solution is quite small (Korobkin 1995). For example, the
difference between the hydrodynamic forces predicted by the acoustic approximation
and by the Wagner theory is of order O(t−1/2) as t→∞. Nevertheless, the acoustic
effects decay with time and their contribution becames much smaller than that of
the inertia effects. The subsonic stage is over and the inertia stage starts.
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7. Inertia stage

This stage was the subject of intensive study by Wagner (1932). It is worth noting
that there is no time scale associated with this stage. It seems logically correct to
consider this stage as the part of the subsonic stage when t � 1. The dimension of
the contact region grows with time as O(

√
t), therefore, it is convenient to introduce

new variables as follows:

x = x1/ε, y = y1/ε, t = t1/ε
2, (7.1)

where ε is a formal small parameter, and consider the asymptotic behaviour of the
combined solution at the subsonic stage as ε → 0. Correspondingly, the boundary
problem, which describes the outer solution at the inertia stage, can be obtained by
substituting (7.1) and h = h1/ε

2, φ = φ1/ε into equations (3.4)–(3.9) and consider-
ating their limits as ε→ 0. We find that the left-hand side in (3.4) must be changed
to zero and the initial conditions (3.7) have to be omitted. All other relations are
the same as in the acoustic approximation. In order to construct a uniformly valid
asymptotic solution close to the contact points, the jet solution in the jet root region
is used (Wagner 1932; Armand & Cointe 1989; Howison et al. 1991).

It should be noted that there is no shock front in the Wagner scheme, because the
distance between the shock and the contact region is of order O(ε−2) and is much
greater than the length scale chosen. This leads to some contradictions of the Wagner
theory when it is used without its connection with the general impact theory. The
most famous contradiction is connected with the energy conservation law which does
not hold within the framework of the Wagner approach (see Korobkin 1996). The
first attempt to incorporate the acoustic effects into the impact theory was made by
Grigoryan (1962). He considered the nonlinear self-similar problem of symmetrical
wedge penetration into a weakly compressible liquid. It was shown that near the
entering body the nonlinear model of the ideal incompressible liquid can be used,
but far from the body the acoustic model provides the correct description of the flow.

These reasonings demonstrate that the acoustic effects will be localized near the
shock front for large times. The analysis of the shock propagation through the liquid
bulk and the shock interaction with the liquid boundaries are important in connec-
tion with the shock reflection at the rear side of the drop and possible subsequent
cavitation inside the liquid (Camus 1971). In order to describe the flow far from the
impact region, the following new variables are introduced:

x = x2/ε
2, y = y2/ε

2, t = t2/ε
2, (7.2)

where ε � 1, ε = O(M1/2) as M → 0 and x2 = O(1), y2 = O(1), t2 = O(1). If
ε−1M1/2 → 0 as M → 0, the acoustic model provides the approximate solution for
large times. In particular, the pressure distribution far from the contact region is

p(x, y, t) ∼ − y

πr̂

∫ t/r̂

1
F ′(t− r̂α)

α dα√
α2 − 1

(7.3)

as r̂ →∞ and t→∞, where r̂ = (x2 +y2)1/2 and F (t) is the hydrodynamic force on
the rigid moving surface. At the supersonic stage the force is equal to the product
of one-dimensional impact pressure, which is unity in the non-dimensional variables,
and the wetted area, which is 2

√
2t in our case (see Skalak & Feit 1966). Thus,

F (t) = 2
√

2t when 0 < t < 1
2 . There is no formula available for F (t) when t > 1

2 , but
from the Wagner theory we know that F (t)→ 2π as t→∞. The rate of convergence
is expected to be very low: F (t)− 2π = O(t−1/2) as t→∞ (Korobkin 1995).
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It is worth noting that the function on the right-hand side of (7.3) is the exact
solution of the problem (3.4)–(3.7) where the boundary conditions are changed to
p = F (t)δ(x), δ(x) is the Dirac delta-function. The asymptotic formula (7.3) is
derived by the averaging procedure and takes into account that the distances between
the shock front and the relief waves are small. The pressure along the shock front,
t/r̂ → 1 + 0, is given as

p ∼ sinϕ/
√
r̂,

where sinϕ = −y/r̂, and does not correspond to the distribution provided by the
classical geometrical acoustic.

If ε =
√
M the length scale will be equal to R for the new variables, and the time

scale will be R/c0. The last quantity is equal to the time the acoustic front takes to
reach the drop centre. The deformation of the drop is estimated as O(MR) and can
be neglected at the time interval under consideration. As the result, we obtain the
acoustic model which governes the liquid flow inside the drop at the inertia stage
far from the contact region (see Lesser & Field 1983b). Within the framework of
this model the pressure distribution is given by the function q(x2, y2, t2), p =

√
Mq,

which satisfies the wave equation

∂2q

∂t22
=
∂2q

∂r2 +
1
r

∂q

∂r
+

1
r2

∂2q

∂θ2 (7.4)

inside the circle r 6 1, where x2 = r sin θ, y2 = 1 − r cos θ, is equal to zero outside
the contact region, and has to correspond to the asymptotic formula (7.3) close to
the impact region. It is worth noting that the last matching condition is equivalent
to the boundary condition

q =
√
MF (t2/M)δ(θ) (r = 1). (7.5)

The scale of the acoustic pressure p is equal to ρ0c
1/2
0 V 3/2. The dimension of the

contact region is of order O(
√
Mt2) and tends to zero as M → 0.

The flow inside the drop at leading order does not influence the pressure distri-
bution close to the contact region when 0 < t2 < 4. Therefore, the dimension of the
contact region and the pressure distribution along it are determined by the acoustic
approximation (3.4)–(3.7) when t2 = O(M) and by the Wagner theory when t2 < 4.
This means that the model (7.4), (7.5), with the initial conditions

q = 0,
∂q

∂t2
= 0 t2 = 0, r < 1, (7.6)

is valid when 0 < t2 < 4. With the help of the response function q̂(r, θ, t2), which
satisfies (7.4)–(7.6) and the boundary condition q̂(1, θ, t2) = δ(θ) when t2 > 0, the
solution can be written as

q(r, θ, t2) = M−1/2
∫ t2

0
F ′(τ/M)q̂(r, θ, t2 − τ) dτ.

The dimension of the narrow zone where the acoustic effects are of major impor-
tance at the inertia stage can be estimated as O(M) for small Mach numbers. This is
why we can use geometrical acoustic theory to estimate the intensity of relief waves
and to analyse the wave pattern as suggested by Lesser & Field (1983b). In this
theory signals propagate along the rays with the origin at the point x2 = 0, y2 = 0.
Close to the origin, the signal intensities have to correspond to the acoustic solution
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(7.3). The calculations predict that the focusing of the relief waves coming from the
rear side of the circular drop occurs at the symmetry axis at the distance 2

3R from
the drop top. The experimental results by Camus (1971) and Field et al. (1989) give
distances in the ranges 0.5R÷ 0.62R and 0.5R÷ 0.72R, respectively, which roughly
correspond to the theoretical estimation. The geometrical acoustic theory does not
give any details of the pressure distribution behind the wave fronts, which can be
very complicated. That is why the careful analysis of the problem based on the model
(7.4)–(7.6) is very desirable.

8. Conclusion

It was shown in the present paper that the asymptotic approach to the impact
problem clarifies the roles of different impact models and demonstrates the links
between them, as well as the areas of the model validities. At the same time this
approach provides new ideas to design experiments on impact and to derive adequate
numerical algorithms to treat the impact problems. The idea to divide difficulties and
to analyse them separately is very attractive and with careful realization, would lead
to progress in the study of liquid–solid impact.
The paper was prepared for publication during the author’s stay at the Department of Naval
Architechture and Ocean Engineering, Hydrodynamics Laboratory, University of Glasgow. The
author thanks the Royal Society for their support of this visit and Professor J. E. Field and
Professor D. H. Peregrine for reading and correcting this paper.
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